Long-term vitamin C treatment increases vascular tetrahydrobiopterin levels and nitric oxide synthase activity.

نویسندگان

  • Livius V d'Uscio
  • Sheldon Milstien
  • Darcy Richardson
  • Leslie Smith
  • Zvonimir S Katusic
چکیده

In cultured endothelial cells, the antioxidant, L-ascorbic acid (vitamin C), increases nitric oxide synthase (NOS) enzyme activity via chemical stabilization of tetrahydrobiopterin. Our objective was to determine the effect of vitamin C on NOS function and tetrahydrobiopterin metabolism in vivo. Twenty-six to twenty-eight weeks of diet supplementation with vitamin C (1%/kg chow) significantly increased circulating levels of vitamin C in wild-type (C57BL/6J) and apolipoprotein E (apoE)--deficient mice. Measurements of NOS enzymatic activity in aortas of apoE-deficient mice indicated a significant increase in total NOS activity. However, this increase was mainly due to high activity of inducible NOS, whereas eNOS activity was reduced. Significantly higher tetrahydrobiopterin levels were detected in aortas of apoE-deficient mice. Long-term treatment with vitamin C restored endothelial NOS activity in aortas of apoE-deficient mice, but did not affect activity of inducible NOS. In addition, 7,8-dihydrobiopterin levels, an oxidized form of tetrahydrobiopterin, were decreased and vascular endothelial function of aortas was significantly improved in apoE-deficient mice. Interestingly, vitamin C also increased tetrahydrobiopterin and NOS activity in aortas of C57BL/6J mice. In contrast, long-term treatment with vitamin E (2000 U/kg chow) did not affect vascular NOS activity or metabolism of tetrahydrobiopterin. In vivo, beneficial effect of vitamin C on vascular endothelial function appears to be mediated in part by protection of tetrahydrobiopterin and restoration of eNOS enzymatic activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vascular endothelial dysfunction: does tetrahydrobiopterin play a role?

Tetrahydrobiopterin is one of the most potent naturally occurring reducing agents and an essential cofactor required for enzymatic activity of nitric oxide synthase (NOS). The exact role of tetrahydrobiopterin in the control of NOS catalytic activity is not completely understood. Existing evidence suggests that it can act as allosteric and redox cofactors. Suboptimal concentration of tetrahydro...

متن کامل

A specific role for eNOS-derived reactive oxygen species in atherosclerosis progression.

OBJECTIVE When the availability of tetrahydrobiopterin (BH4) is deficient, endothelial nitric oxide synthase (eNOS) produces superoxide rather than NO (uncoupled eNOS). We have shown that the atherosclerotic lesion size was augmented in apolipoprotein E-deficient (ApoE-KO) mice overexpressing eNOS because of the enhanced superoxide production. In this study, we addressed the specific importance...

متن کامل

Prevention of lethal murine pancreas ischemia reperfusion injury is specific for tetrahydrobiopterin

Tetrahydrobiopterin has been shown to efficiently abrogate ischemia reperfusion injury (IRI). However, it is unclear, whether its beneficial action relies on cofactor activity of one of the five known tetrahydrobiopterin-dependent reactions or on its antioxidative capacity. We therefore compared tetrahydrobiopterin with the pterin derivate tetrahydroneopterin (similar biochemical properties, bu...

متن کامل

Targeted increases in endothelial cell superoxide anion production stimulate eNOS-dependent nitric oxide production, not uncoupled eNOS activity.

Every once in a while a paper comes along that makes us question our understanding of cell biology. Current theory holds that oxidative stress increases oxidation of tetrahydrobiopterin (BH4), which in turn uncouples endothelial nitric oxide synthase (eNOS) activity. Numerous publications, using a variety of experimental approaches, provide strong support for the BH4 oxidation hypothesis. Indee...

متن کامل

Cytokines stimulate GTP cyclohydrolase I gene expression in cultured human umbilical vein endothelial cells.

In vascular endothelial cells, tetrahydrobiopterin serves as an essential cofactor required for enzymatic activity of nitric oxide synthase. GTP cyclohydrolase I is the rate-limiting enzyme in the biosynthesis of tetrahydrobiopterin. Previous studies have demonstrated that proinflammatory cytokines stimulate production of tetrahydrobiopterin in endothelial cells. Long-term regulation of GTP cyc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 92 1  شماره 

صفحات  -

تاریخ انتشار 2003